Asymptotic existence of fair divisions for groups
نویسندگان
چکیده
منابع مشابه
Asymptotic existence of fair divisions for groups
The problem of dividing resources fairly occurs in many practical situations and is therefore an important topic of study in economics. In this paper, we investigate envy-free divisions in the setting where there are multiple players in each interested party. While all players in a party share the same set of resources, each player has her own preferences. Under additive valuations drawn random...
متن کاملAsymptotic existence of proportionally fair allocations
Fair division has long been an important problem in the economics literature. In this note, we consider the existence of proportionally fair allocations of indivisible goods, i.e., allocations of indivisible goods in which every agent gets at least her proportionally fair share according to her own utility function. We show that when utilities are additive and utilities for individual goods are...
متن کاملOn Maxsum Fair Cake Divisions
We consider the problem of selecting fair divisions of a heterogeneous divisible good among a set of agents. Recent work (Cohler et al., AAAI 2011) focused on designing algorithms for computing maxsum—social welfare maximizing—allocations under the fairness notion of envyfreeness. Maxsum allocations can also be found under alternative notions such as equitability. In this paper, we examine the ...
متن کاملSigned Groups, Sequences, and the Asymptotic Existence of Hadamard Matrices
We use the newly developed theory of signed groups and some known sequences with zero autocorrelation to derive new results on the asymptotic existence of Hadamard matrices. New values of t are obtained such that, for any odd number p, there exists an Hadamard matrix of order 2tp. These include: t = 2N, where N is the number of nonzero digits in the binary expansion of p, and t = 4[-~ log2((p1)...
متن کاملConstructing divisions into power groups
The result, due to Henckell, Margolis, Pin and Rhodes modulo Ash’s solution to the pointlike conjecture, that every finite block group divides a power group, has long been considered to be one of the deepest results in finite semigroup theory. However, the proof is not constructive. Solving a long-standing problem, we provide in this paper an explicit construction of such a division. We also ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Social Sciences
سال: 2017
ISSN: 0165-4896
DOI: 10.1016/j.mathsocsci.2017.05.006